E. coli bacteria have been made to produce diesel fuel (Credit: Marian Littlejohn)

A Method That Uses Bacteria to Produce Pure Diesel Developed

A group of scientists from the University of Exeter, with support from Shell, has developed a new technique which makes use of bacteria to produce diesel fuel. While this new method still faces a number of problems on its way to commercialization, the diesel, produced by special strains of E. coli bacteria, is almost identical to conventional diesel fuel.

This means that it does not need to be blended with petroleum products as is often required by biodiesels derived from plant oils. It also means that the diesel can be used with current supplies in existing infrastructure because engines, pipelines and tankers do not need to be modified. Biofuels with these characteristics are being termed ‘drop-ins’.

Professor John Love from Biosciences at the University of Exeter said: “Producing a commercial biofuel that can be used without needing to modify vehicles has been the goal of this project from the outset. Replacing conventional diesel with a carbon neutral biofuel in commercial volumes would be a tremendous step towards meeting our target of an 80% reduction in greenhouse gas emissions by 2050. Global demand for energy is rising and a fuel that is independent of both global oil price fluctuations and political instability is an increasingly attractive prospect.”

E. coli bacteria naturally turn sugars into fat to build their cell membranes. Synthetic fuel oil molecules can be created by harnessing this natural oil production process. Large scale manufacturing using E. coli as the catalyst is already commonplace in the pharmaceutical industry and, although the biodiesel is currently produced in tiny quantities in the laboratory, work will continue to see if this may be a viable commercial pathway to ‘drop in’ fuels.

Rob Lee from Shell Projects & Technology said: “We are proud of the work being done by Exeter in using advanced biotechnologies to create the specific hydrocarbon molecules that we know will continue to be in high demand in the future. While the technology still faces several hurdles to commercialisation, by exploring this new method of creating biofuel, along with other intelligent technologies, we hope they could help us to meet the challenges of limiting the rise in carbon dioxide emissions while responding to the growing global requirement for transport fuel.”

This work was supported by a grant from Shell Research Ltd and a Biotechnology and Biological Sciences Research Council (BBSRC) Industry Interchange Partnership Grant.

[notification type=”help”]Howard, T., Middelhaufe, S., Moore, K., Edner, C., Kolak, D., Taylor, G., Parker, D., Lee, R., Smirnoff, N., Aves, S., & Love, J. (2013). Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli Proceedings of the National Academy of Sciences DOI: 10.1073/pnas.1215966110[/notification]

Published by

The Daily Fusion

The Daily Fusion is a daily updated news source on all things currently happening in the world of energy, covering a wide range of subjects from the big power industry to renewable energy and the latest scientific advances in the field.

  • As a diesel driver, can’t wait for hurdles to be over come, keep up the hard work….thank you shell for investing in these breakthroughs