Transparent Graphene Electrode Makes Flexible Solar Cells Possible

Electron microscope images show a new material for transparent electrodes that might find uses in solar cells, flexible displays for computers and consumer electronics, and future
Electron microscope images show a new material for transparent electrodes that might find uses in solar cells, flexible displays for computers and consumer electronics, and future "optoelectronic" circuits for sensors and information processing. The electrodes are made of silver nanowires covered with a material called graphene. At bottom is a model depicting the "co-percolating" network of graphene and silver nanowires. (Credit: Purdue University / Birck Nanotechnology Center)

In a recent article published in journal Advanced Functional Materials, researchers describe a new graphene-coated transparent electrode made of silver nanowires. Because of its ability to bend without breaking, the new invention can be used to create flexible solar cells, computer and consumer electronics displays and future “optoelectronic” circuits for sensors and information processing.

The hybrid material shows promise as a possible replacement for indium tin oxide, or ITO, used in transparent electrodes for touch-screen monitors, cell-phone displays and flat-screen televisions. Industry is seeking alternatives to ITO because of drawbacks: It is relatively expensive due to limited abundance of indium, and it is inflexible and degrades over time, becoming brittle and hindering performance.

“If you try to bend ITO it cracks and then stops functioning properly,” said Purdue University doctoral student Suprem Das.

The hybrid material could represent a step toward innovations, including flexible solar cells and color monitors, flexible ”heads-up” displays in car windshields and information displays on eyeglasses and visors.

“The key innovation is a material that is transparent, yet electrically conductive and flexible,” said David Janes, a professor of electrical and computer engineering.

The hybrid concept was proposed in earlier publications by Purdue researchers, including a 2011 paper in the journal Nano Letters. The concept represents a general approach that could apply to many other materials, said Alam, who co-authored the Nano Letters paper.

“This is a beautiful illustration of how theory enables a fundamental new way to engineer material at the nanoscale and tailor its properties,” he said.

Such hybrid structures could enable researchers to overcome the “electron-transport bottleneck” of extremely thin films, referred to as two-dimensional materials.

Combining graphene and silver nanowires in a hybrid material overcomes drawbacks of each material individually: the graphene and nanowires conduct electricity with too much resistance to be practical for transparent electrodes. Sheets of graphene are made of individual segments called grains, and resistance increases at the boundaries between these grains. Silver nanowires, on the other hand, have high resistance because they are randomly oriented like a jumble of toothpicks facing in different directions. This random orientation makes for poor contact between nanowires, resulting in high resistance.

“So neither is good for conducting electricity, but when you combine them in a hybrid structure, they are,” Janes said.

The graphene is draped over the silver nanowires.

“It’s like putting a sheet of cellophane over a bowl of noodles,” Janes said. “The graphene wraps around the silver nanowires and stretches around them.”

Findings show the material has a low “sheet resistance,” or the electrical resistance in very thin layers of material, which is measured in units called “squares.” At 22 ohms per square, it is five times better than ITO, which has a sheet resistance of 100 ohms per square.

Moreover, the hybrid structure was found to have little resistance change when bent, whereas ITO shows dramatic increases in resistance when bent.

“The generality of the theoretical concept underlying this experimental demonstration—namely ’percolation-doping’—suggests that it is likely to apply to a broad range of other 2-D nanocrystaline material, including graphene,” Alam said.

Chen, R., Das, S., Jeong, C., Khan, M., Janes, D., & Alam, M. (2013). Co-Percolating Graphene-Wrapped Silver Nanowire Network for High Performance, Highly Stable, Transparent Conducting Electrodes Advanced Functional Materials DOI: 10.1002/adfm.201300124

The above story is based on or reprinted from materials provided by Purdue University.

Note: Materials may be edited for accuracy, neutrality, length, clarity and style. For further information, please contact the source cited above.