New Photovoltaic Cell Doubles as Solar Energy Storage System

A house with solar panels on the roof (under construction) (Credit: Flickr @ Emily Mills http://www.flickr.com/photos/emilymills/)
A house with solar panels on the roof (under construction) (Credit: Flickr @ Emily Mills http://www.flickr.com/photos/emilymills/)

For solar energy to be really practical, it is important to find a way to store it effectively. Energy from large solar plants can be stored through pumped hydropower systems, in batteries or even in porous rocks. For small-scale applications, however, batteries seem like the only viable option. Or maybe it is possible to combine a solar cell and a battery in a single device. A UW-Madison electrical engineer has proposed a design for dye-sensitized solar cells that can at the same time generate power and work as a solar energy storage system.

Hongrui Jiang and his students developed the idea, published in the journal Advanced Materials June 6. Jiang is the Vilas Distinguished Achievement Professor of electrical and computer engineering at UW-Madison and specializes in microscale devices. He and his students developed the technology as an offshoot of a National Institutes of Health grant to design a self-focusing contact lens that adapts to the eyes of adults suffering from presbyopia, a natural aging process that stiffens the lens and reduces the eye’s ability to focus, especially at short distances.

To power that contact lens, Jiang and his team have worked out a design that balances energy harvesting, storage and usage. “We needed a multi-functional and small-form-factor device in order to integrate it all into a single contact lens structure,” says Jiang.

The top layer of each photovoltaic cell is a conventional photo electrode, converting sunlight into electrons. During that conversion process, the electrons split off into two directions: most electrons flow out of the device to support a power load, while some are directed to a polyvinylidene fluoride polymer (PVDF) coated on zinc oxide nanowires. The PVDF has the high dielectric constant required to serve as an energy storage solution. “When there’s no sunlight, the stored power will come back through the nano wires to power the load.”

The final design allows for a standard-size solar cell that can simultaneously power a device and store energy for later use, creating a closed-loop system for small-scale applications of solar energy. “We can have some energy set aside locally, right in the panel, so that when you need it, you can get it,” says Jiang.

The final design allows for a standard-size solar cell that can simultaneously power a device and store energy for later use.

Other such solar panels—referred to as photovoltaic self-charging cells—have been around for a while, but the ability to provide energy continuously, rain or shine, sets Jiang’s apart.

Currently, Jiang’s proof of concept converts only 4 percent of the sunshine striking the photoreceptor into usable electricity—and that’s approximately 20 percent less efficient than most commercial solar panels in use today. However, as Jiang and his team refine the design from a standard-size photovoltaic cell to their specific use, they expect both the conversion efficiency and the amount of energy they can store to improve.

Since the design scales up easily, says Jiang, microgrids—small scale power grids used to balance renewable power sources in energy-efficient buildings—would be another ideal application, since self-contained solar panels would limit the need for battery management and would allow engineers to design buildings that rely on the outside power grid even less than current systems.

And there are futuristic applications: picture lighting systems that can be installed in remote areas—without running expensive power lines. “You could have one solar panel installed that will store the energy the system might need through nights and cloudy days,” says Jiang.

By Mark Riechers

Zhang, X., Huang, X., Li, C., & Jiang, H. (2013). Dye-Sensitized Solar Cell with Energy Storage Function through PVDF/ZnO Nanocomposite Counter Electrode Advanced Materials DOI: 10.1002/adma.201301088

The above story is based on or reprinted from materials provided by University of Wisconsin–Madison.

Note: Materials may be edited for accuracy, neutrality, length, clarity and style. For further information, please contact the source cited above.

  • UKGary

    I think this product will have its greatest use in low powered consumer goods such as calculators, cordless keyboards, wireless mouse etc. where an integrated solar cell with power storage can be built into the device.